ТРАНСФОРМАТОРЫ ТМГ21

Трансформаторы ТМГ21 являются трехфазными масляными трансформаторами общего назначения. Трансформаторы изготавливаются с сочетанием напряжений 6/0,4 кВ, 6,3/0,4 кВ, 10/0,4 кВ, 10,5/0,4 кВ, со схемами и группами соединения обмоток Д/Ун-11 и У/Ун-0.

Согласно ГОСТ 11677, предельные отклонения технических параметров трансформаторов составляют: напряжение короткого замыкания ±10%; потери короткого замыкания на основном ответвлении +10%; потери холостого хода +15%; полная масса +10%.

Обмотка низшего напряжения трансформаторов этой серии выполнена не из алюминиевых проводов, а **из алюминиевой фольги,** что сочетает в себе простоту намотки с высоким уровнем надежности.

Применение современных обмоточных и изоляционных материалов позволяет создать конструкцию, в которой негативные последствия ударов токов внешнего короткого замыкания сведены к минимуму. Ширина алюминиевой ленты равна высоте обмотки низшего напряжения - это существенно уменьшает осевые динамические усилия в трансформаторе. В качестве межслоевой изоляции применена бумага типа DDP, которая в процессе сушки обмоток спекается. Таким образом, создается плотная целостная конструкция, обладающая повышенной стойкостью и к радиальным усилиям.

Для контроля уровня масла в трансформаторах предусмотрен маслоуказатель поплавкового типа.

Для контроля внутреннего давления в баке и сигнализации в случае превышения им допустимых величин в трансформаторах, размещаемых в помещении, предусматривается по заказу потребителя установка электроконтактного мановакуумметра.

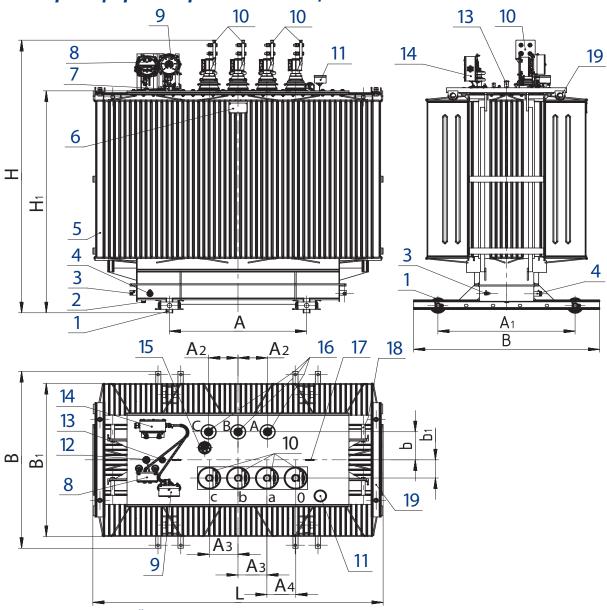
Для измерения температуры верхних слоев масла на крышке трансформаторов предусмотрена гильза для установки жидкостного стеклянного термометра, которым трансформаторы комплектуются по заказу потребителя.

Для измерения температуры верхних слоев масла и управления внешними электрическими цепями трансформаторы, предназначенные для эксплуатации в помещении или под навесом, по заказу потребителя комплектуются манометрическим сигнализирующим термометром.

Вводы и отводы нейтрали обмоток НН трансформаторов рассчитаны на продолжительную нагрузку током, равным 100% номинального тока обмотки НН.

Трансформаторы комплектуются транспортными роликами для перемещения как в продольном, так и в поперечном направлениях.

Технические характеристики трансформаторов ТМГ21 Схема и группа соединения обмоток - У/Ун-0, Д/Ун-11, напряжение НН - 0,4 кВ


наль мощн	Номи- нальная	Номинальное	Поте	Потери, Вт на- пря-			Габаритные размеры, мм										Масса, кг	
	мощность, кВ•А	напряжение ВН, кВ	x.x.	к.з.	жение к.з., %	L	В	Н	H,	A	A ₁	\mathbf{A}_2	A ₃	\mathbf{A}_4	ь	b ₁	мас- ла	пол- ная
	630	6; 6,3; 10; 10,5	1030	7450	5,5	1520	1000	1435	1140	820	820	230	135	135	170	160	395	1700
	1000	6; 6,3; 10	1300	11600	5,5	1500	1180	1770	1410	820	820	230	135	135	160	150	575	2550
	1250	6; 6,3; 10	1550	13600	6,0	1865	1210	1780	1425	820	820	230	160	160	190	90	735	3160
	1600	6; 10	2050	16750	6,0	2060	1300	1880	1470	820	820	230	160	160	195	180	930	3800
	2500	6; 10	2500	26500	6,0	2280	1450	2250	1825	1070	1070	230	225	225	230	150	1330	5600
	2300	35	3000	26500	6,5	2420	1455	2340	1900	1070	1070	500	225	225	250	238	1800	6800
	3200	6,3; 10,5	3000	26700	6,5	2430	1450	2290	1865	1070	1070	250	270	270	250	250	1772	8265

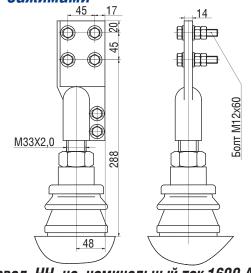
Трансформаторы ТМГ21 мощностью 630 ... 1600 кВ•А

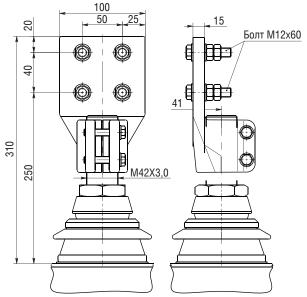
- 1 пробка для удаления остатков масла (в трансформаторе мощностью 1600 кВ А);
- 2 пробка сливная;
- 3 зажим заземления;
- 4 бак*;
- 5 табличка;
- 6 серьга для подъема трансформатора;
- 7 гильза для стеклянного термометра и термобаллона манометрического термометра;
- 8 маслоуказатель;
- 9 патрубок для заливки масла;
- 10 ввод ВН;
- 11 ввод НН;
- 12 ролик транспортный;
- 13 переключатель;
- 14 пробивной предохранитель (устанавливается по заказу потребителя).
- * графика рисунка соответствует трансформатору мощностью 1250 кВ•А

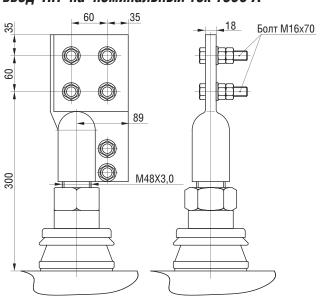
Трансформаторы ТМГ21 мощностью 2500 ... 3200 кВ•А

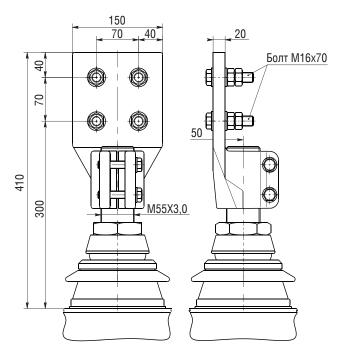


- 1-ролик транспортный;
- 2-пробка для удаления продуктов окисления и остатков масла;
- 3-зажим заземления;
- 4-пробка для слива масла;
- 5-бак;
- 6-табличка;
- 7-патрубок для заливки масла;
- 8-термометр манометрический (устанавливается по заказу потребителя);
- 9-мановакуумметр (устанавливается по заказу потребителя);
- 10-вводы НН;
- 11-пробивной предохранитель (устанавливается по заказу потребителя);
- 12-гильза для установки термобаллона термометра;
- 13-маслоуказатель;
- 14-коробка зажимов (устанавливается при заказе мановакууметра и/или термометра манометрического);
- 15-привод переключателя;
- 16-вводы ВН;
- 17-серьга для подъема крышки;
- 18-узел для подъема трансформатора;
- 19-узел для крепления трансформатора при транспортировании.


Вводы НН для трансформаторов серий ТМГ, ТМГ11, ТМГСУ, ТМГСУ11, ТМГ12, ТМГ21 ТМГ32, ТМГ33, ТМГ35, ТМЭГ, ТМБГ, ОМ, ОМГ, ОМП, ТМТО

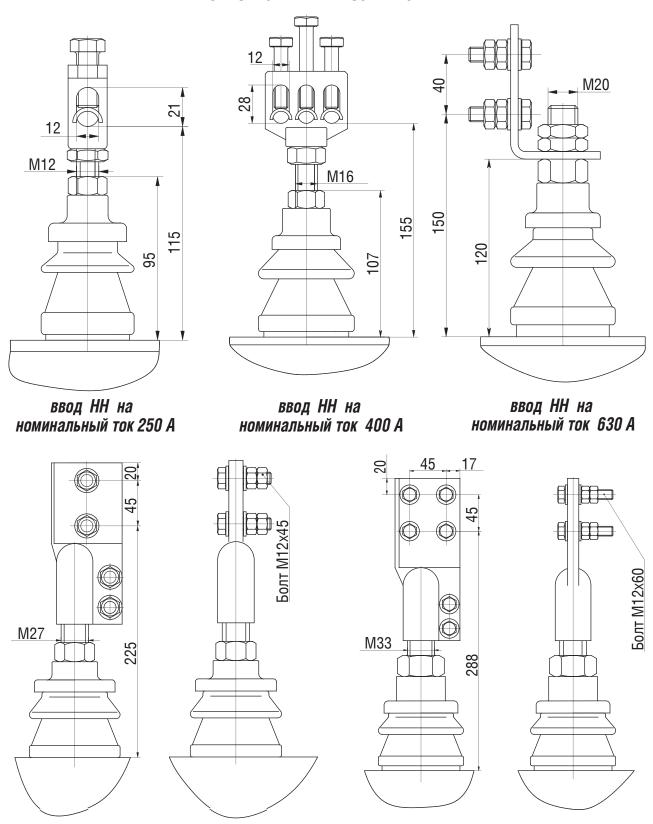

на номинальный ток 100 А на номинальный ток 250 А на номинальный ток 400 А на номинальный ток 630 А


ввод НН на номинальный ток 1000 А


ввод НН на номинальный ток 1600 А

ввод НН на номинальный ток 2000 А

ввод НН на номинальный ток 2500 А


ввод НН на номинальный ток 4000 А

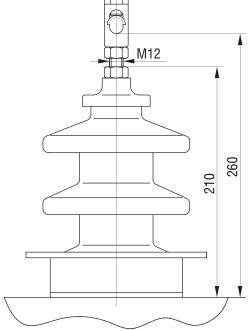
По заказу потребителя вводы НН трансформаторов мощностью 16...630 кВ-А можно комплектовать контактными зажимами.

Вводы НН для трансформаторов серии ТМПН, ТМПНГ

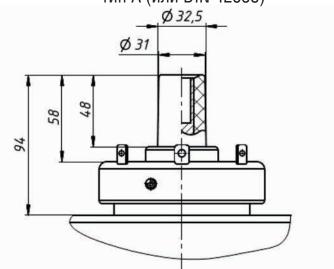
с контактными зажимами

ввод НН на номинальный ток 1000 А

ввод НН на номинальный ток1600 А


Вводы ВН для трансформаторов серий ТМГ, ТМГ11, ТМГСУ, ТМГСУ11, ТМГ12, ТМГ21 ТМГ32, ТМГ33, ТМГ35, ТМЭГ, ТМБГ, ОМ, ОМГ, ОМП

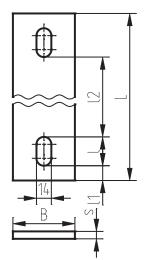
Вводы ВН 6; 10 кВ для трансформаторов серии ТМПН, ТМПНГ


с контактными

зажимами

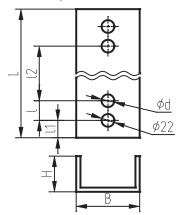
Вводы ВН для трансформаторов ТМГ-630/20-У2, TMT-1000/20-Y2, TMT-1250/20-Y2

Штепсельные проходные изоляторы с внешним конусом по EN 50180 тип A (или DIN 42538)



Для присоединения кабелей к изоляторам применяются адапторы: адаптор с изгибом (K)158LR прямой адаптор (K)152SR. или

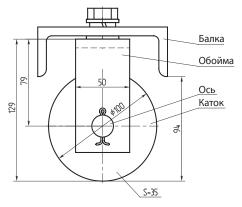
Размеры отверстий под фундаментные болты


Трансформаторы ТМГ мощностью 16...63 кВ-А, ТМГСУ мощностью 25...63 кВ-А,

Тип	Номинальная	L,	l,	I1 ,	12,	S,	В,
трансформатора	мощность, кВ-А	MM	MM	MM	MM	MM	MM
ТМГ-16	16	390	22	9	328	8	50
ТМГ-25 ТМГСУ-25	25	390	22	9	328	8	50
ТМГ-40 ТМГСУ-40	40	390	22	9	328	8	50
TMF-63 TMFCY-63	63	440	22	9	378	8	50

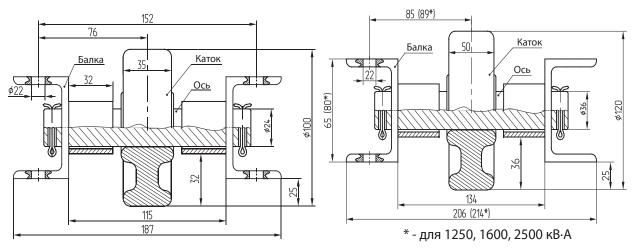
Трансформаторы ТМГ11 мощностью 100...400 кВ-А, ТМГ12 мощностью 250...400 кВ·А, ТМГСУ11 мощностью 100...250 кВ·А

Тип трансформатора	Номинальная мощность, кВ.А	d, MM	L, MM	l, MM	I1, мм	12, MM	Н,	В,
TMF11-100 TMFCY11-100	100	22	570	36	24	450	40	80
TMF11-160 TMFCY11-160	160							
ТМГ11-250 ТМГ12-250 ТМГСУ11-250	250	18	680	46	19	550	40	80
TMΓ11-400 TMΓ12-400	400		790	46	19	660	40	80


АКУСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ силовых масляных трансформаторов типа ТМГ, ТМГ11, ТМГСУ, ТМГСУ11, ТМГ21

Значения корректированного уровня звуковой мощности трансформаторов типа ТМГ, ТМГ11, ТМГСУ, ТМГСУ11, ТМГ21 не превышают нормы, установленные ГОСТ 12.2.024-87. Для трансформаторов мощностью не более 100 кВ-А значения корректированного уровня звуковой мощности не нормируются.

Номинальная мощьность трансформатора кВ·А	100	160	250	400	630	1000	1250	1600	2500
Корректируванный уровень звуковой мощь- ности, дБА, не более	59	62	65	68	70	73	75	75	76


РОЛИКИ ТРАНСПОРТНЫЕ

Для трансформаторов 160...400 кВ-А

Для трансформаторов 630 кВ-А

Для трансформаторов 1000...2500 кВ-А

ПЕРЕГРУЗОЧНАЯ СПОСОБНОСТЬ

силовых масляных трансформаторов мощностью 16 ... 3200 кВ-А

Допустимые систематические нагрузки не вызывают сокращения нормируемого срока службы трансформатора, так как за продолжительность графика нагрузки обеспечивается нормальный или пониженный против нормального расчетный износ изоляции. Допустимые аварийные перегрузки вызывают повышенный по сравнению с нормальным расчетный износ витковой изоляции, что может привести к сокращению нормированного срока службы трансформатора, если повышенный износ впоследствии не компенсирован нагрузками с износом витковой изоляции ниже нормального.

Максимально допустимые *систематические нагрузки* и допустимые *аварийные* **перегрузки** масляных трансформаторов определяются в соответствии с табл. 1 и 2.

В таблицах приведены значения К, и h для суточного прямоугольного двухступенчатого графика нагрузки трансформатора при различных значениях Кі и вохл. Для промежуточных значений ${\sf K_1}$ и Θ охл значение ${\sf K_2}$ следует определять линейной интерполяцией.

вохл - температура окружающей среды, °С;

 ${\sf K_{\scriptscriptstyle 1}}$ - начальная нагрузка, предшествующая нагрузке или перегрузке ${\sf K_{\scriptscriptstyle 2}}$ или нагрузка после снижения К2, в долях номинальной мощности или номинального тока:

$$K_1 = S_1 / 3 HOM = I_1 / I_{HOM}$$

 K_2 - нагрузка или перегрузка, следующая за начальной нагрузкой K_1 , в долях номинальной мощности или номинального тока,

 ${\bf K_2} = {\bf S_2}$ / **Эном** = ${\bf I_2}$ / ${\bf I_{hom}}$ h - продолжительность нагрузки ${\bf K_2}$ на двухступенчатом суточном графике нагрузки, ч. В табл. 1 обозначение (+) указывает на то, что для данного режима нагрузки расчетное значение K2 > 2.0, но допускается его любое значение в интервале 1,5< K2 < 2.0.

Табл. 1 – Нормы максимально допустимых систематических нагрузок

	K ₂ при значениях K ₁ = 0,251,0													
h, ч	0.25	0.4	0.5	0.6	0.7	0.8	0.9	1.0						
	θ_{oxn} = - 20 °C													
0.5	+	+	+	+	+	+	+	+						
1	+	+	+	+	+	+	+	+						
2	+	+	1.99	1.96	1.93	1.89	1.85	1.79						
4	1.70	1.69	1.67	1.66	1.64	1.62	1.60	1.57						
6	1.56	1.55	1.54	1.54	1.53	1.51	1.50	1.48						
8	1.48	1.48	1.47	1.47	1.46	1.45	1.45	1.43						
12	1.41	1.40	1.40	1.40	1.40	1.39	1.39	1.38						
24	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30						
			θ	_{охл} = - 10 °C										
0.5	+	+	+	+	+	+	+	+						
1	+	+	+	+	+	+	+	1.95						
2	1.95	1.92	1.90	1.87	1.83	1.79	1.75	1.69						
4	1.62	1.61	1.60	1.58	1.56	1.54	1.52	1.48						
6	1.49	1.48	1.47	1.46	1.45	1.44	1.42	1.40						
8	1.41	1.41	1.40	1.40	1.39	1.38	1.37	1.36						
12	1.34	1.34	1.33	1.33	1.33	1.32	1.31	1.31						
24	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23						

Продолжение табл. 1

h			К ₂ пр	и значения	$1 \times K_1 = 0.25$	1,0		
h, ч	0.25	0.4	0.5	0.6	0.7	0.8	0.9	1.0
			θ_0	$0^{\circ} 0 = 0^{\circ} \mathbf{C}$				
0.5	+	+	+	+	+	+	+	+
1	+	+	+	+	+	1.99	1.91	1.8
2	1.86	1.83	1.80	1.77	1.74	1.69	1.64	1.56
4	1.54	1.53	1.51	1.50	1.48	1.46	1.43	1.38
6	1.41	1.40	1.39	1.38	1.37	1.36	1.34	1.31
8	1.34	1.33	1.33	1.32	1.31	1.30	1.29	1.27
12	1.27	1.26	1.26	1.26	1.25	1.25	1.24	1.22
24	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16
			θ_{o}	_{хл} = 10 °С				
0.5	+	+	+	+	+	+	+	1.84
1	+	+	+	2.00	1.94	1.86	1.76	1.60
2	1.76	1.73	1.70	1.67	1.63	1.58	1.51	1.40
4	1.46	1.44	1.43	1.41	1.39	1.36	1.32	1.25
6	1.33	1.32	1.31	1.30	1.29	1.27	1.24	1.20
8	1.26	1.26	1.25	1.24	1.23	1.22	1.20	1.17
12	1.19	1.19	1.18	1.18	1.17	1.16	1.15	1.13
24	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08
			θ_0	_{хл} = 20 °С				
0.5	+	+	+	+	+	1.98	1.81	1.00
1	+	1.97	1.92	1.87	1.80	1.71	1.57	1.00
2	1.66	1.63	1.60	1.56	1.51	1.45	1.35	1.00
4	1.37	1.35	1.34	1.32	1.29	1.25	1.19	1.00
6	1.25	1.24	1.23	1.21	1.20	1.17	1.13	1.00
8	1.18	1.17	1.17	1.16	1.15	1.13	1.09	1.00
12	1.11	1.10	1.10	1.09	1.09	1.08	1.06	1.00
24	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	,		θ_{o}	_{хл} = 30 °С			1	
0.5	+	+	+	+	1.92	1.76	1.27	_
1	1.89	1.84	1.79	1.73	1.64	1.51	1.12	_
2	1.55	1.52	1.48	1.44	1.38	1.29	1.02	_
4	1.28	1.26	1.24	1.21	1.18	1.21	0.97	_
6	1.16	1.15	1.13	1.12	1.09	1.05	0.95	_
8	1.09	1.08	1.08	1.06	1.05	1.02	0.94	_
12	1.02	1.02	1.01	1.00	0.99	0.97	0.92	_
24	0.91	0.91	0.91	0.91	0.91	0.91	0.91	_

Продолжение табл. 1

h, ч		K ₂ при значениях K ₁ = 0,251,0												
п, ч	0.25	0.4	0.5	0.6	0.7	0.8	0.9	1.0						
	$\theta_{\rm ox}$ = 40 °C													
0.5	+	+	1.94	1.84	1.69	1.26	_	_						
1	1.75	1.70	1.64	1.56	1.44	1.08	_	_						
2	1.43	1.39	1.35	1.30	1.21	0.96	_	_						
4	1.17	1.15	1.13	1.09	1.04	0.89	_	_						
6	1.06	1.05	1.03	1.01	0.97	0.86	_	_						
8	1.00	0.99	0.98	0.96	0.93	0.85	_	_						
12	0.93	0.92	0.91	0.90	0.88	0.84	_	_						
24	0.82	0.82	0.82	0.82	0.82	0.82	_	_						

Табл. 2 – Нормы допустимых аварийных перегрузок

	1						авариипыл	перегрузок					
h, ч				значениях			·						
,	0.25	0.4	0.5	0.6	0.7	0.8	0.9	1.0					
	$\theta_{\text{OXJI}} = -20^{\circ}\text{C}$												
0.5	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00					
1	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00					
2	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00					
4	1.90	1.80	1.80	1.80	1.80	1.80	1.80	1.80					
6	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70					
8	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70					
12	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60					
24	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60					
$\theta_{\text{ох.л}}$ = - 10 °C													
0.5	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00					
1	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00					
2	2.00	2.00	2.00	2.00	2.00	2.00	1.90	1.90					
4	1.80	1.80	1.80	1.80	1.80	1.70	1.70	1.70					
6	1.70	1.70	1.70	1.60	1.60	1.60	1.60	1.60					
8	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60					
12	1.60	1.60	1.50	1.50	1.50	1.50	1.50	1.50					
24	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50					
	•			$\theta_{\text{ox},\text{I}} = 0 ^{\circ}\text{C}$									
0.5	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00					
1	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00					
2	2.00	2.00	2.00	1.90	1.90	1.90	1.90	1.80					
4	1.70	1.70	1.70	1.70	1.70	1.70	1.60	1.60					
6	1.60	1.60	1.60	1.60	1.60	1.50	1.50	1.50					
8	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50					
12	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50					
24	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50					

Продолжение табл. 2

	K_2 при значениях $K_1 = 0.251.0$											
һ, ч	0.25	0.4	0.5	0.6	0.7	0.8	0.9	1.0				
				$\theta_{\rm oxj} = 10^{\circ} \text{C}$	L	L	L					
0.5	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00				
1	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00				
2	2.00	2.00	2.00	2.00	2.00	2.00	1.90	1.90				
4	1.80	1.80	1.80	1.80	1.80	1.70	1.70	1.70				
6	1.70	1.70	1.70	1.60	1.60	1.60	1.60	1.60				
8	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60				
12	1.60	1.60	1.50	1.50	1.50	1.50	1.50	1.50				
24	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50				
$\theta_{ m ox, II} = 20~^{\circ} extsf{C}$												
0.5	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00				
1	2.00	2.00	2.00	2.00	2.00	2.00	1.80	1.80				
2	1.80	1.80	1.80	1.80	1.70	1.70	1.70	1.60				
4	1.50	1.50	1.50	1.50	1.50	1.40	1.40	1.40				
6	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.30				
8	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30				
12	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30				
24	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30				
				$\theta_{\rm oxj}$ = 30 °C								
0.5	2.00	2.00	2.00	2.00	2.00	2.00	2.00	1.90				
1	2.00	2.00	2.00	2.00	1.90	1.90	1.80	1.70				
2	1.80	1.70	1.70	1.70	1.60	1.60	1.50	1.40				
4	1.40	1.40	1.40	1.40	1.40	1.30	1.30	1.30				
6	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.20				
8	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20				
12	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20				
24	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20				
				$\theta_{\text{охл}} = 40 ^{\circ}\text{C}$								
0.5	2.00	2.00	2.00	2.00	2.00	2.00	1.90	1.70				
1	2.00	1.90	1.90	1.90	1.80	1.70	1.60	1.40				
2	1.60	1.60	1.60	1.50	1.50	1.40	1.30	1.30				
4	1.30	1.30	1.30	1.30	1.20	1.20	1.20	1.20				
6	1.20	1.20	1.20	1.20	1.20	1.20	1.10	1.10				
8	1.20	1.10	1.10	1.10	1.10	1.10	1.10	1.10				
12	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10				
24	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10				

Опросный лист силового масляного трансформатора

1	Тип (ТМГ, ТМЭГ, ТМБГ и т. д.)		
2	Номинальная частота		Гц
3	Номинальная мощность		кВ∙А
4	Номинальное напряжение стороны ВН		кВ
5	Номинальное напряжение стороны НН		кВ
6	(в режиме холостого хода)		
U	Способ, диапазон и ступени регулирования напряжения на стороне ВНПБВ	±2x2,5	%
7	(если иное, то указать в п. примечания)		%
1	Напряжение короткого замыкания при 75 °C (±10%) (указывается при отличии от стандартного)		70
8	Потери холостого хода (+15%)		Вт
^	(указываются при отличии от стандартного)		
9	Потери короткого замыкания при 75 °C (+10%)		Вт
10	Схема и группа соединения обмоток		
	(первый символ относится к стороне высшего напряжения (ВН)		
11	Климатическое исполнение и категория размещения		
12	(У1, ХЛ1, УХЛ1, Т1 и т.д.) Степень защиты		
-	(указывается если отлично от IP00)		
13	Габаритные размеры (max): (при отличии от указанных в каталоге продукции)		
	длина		MM
	ширина		MM
	высота		MM
14	Масса трансформатора (+10%) (в случае ограничения)		ΚГ
15	Конструктивные особенности:		
Прі	имечания:		
	нтактное лицо для проведения технических переговоров:		
тел	пефон:, Ф.И.О		
Сті	рана (город) поставки трансформатора		